Predictive Data Analytics : Pragmatic solution for data-age
*Get your crypto project/offer published on this blog and news sites. Email:contact@cryptoexponentials.com
300 hours of video are uploaded to YouTube every minute! Almost 5 billion videos are watched on YouTube every single day. This is one example of the pace of data growth and overall size of data is piling into zetta-bytes faster. Where am I going with this is relevance of rapid analysis of data measured in hours or days rather than the stereotypical months of traditional data mining. The result is an opportunity to derive meaningful insights to business with more emphasis on predictive data analytics.
Predictive analytics is nothing new. Predictive analytics is a way to identify the probability of future outcomes based upon historical data. For example, from customer perspective, companies can predict a likely lifetime customer value or the probability of either loyalty or churn. Let us look at few use cases to examine the relevance and importance of predictive analytics in the world of enormous data.
A fashion retailer story: Predictive analytics helped in analyzing the campaign spends and predicting incremental campaign impact of spend. This helped the retailer in understanding where not to spend: Having a close look predictive analytics helps in understanding the relationship between customer segments and the marketing campaigns being interacted with. This retailer predicted the probability of a particular channel influencing online or offline purchases within specific customer segments, and while this was enormously useful in understanding how to spend budgets targeting more personalized digital campaigns, it was equally insightful into identifying spend that wasn’t contributing to incremental value. The power of predictive analytics came in determining, should the retailer pay for this ad, or will a sale happen organically through another channel or communication that might cost nothing or next to nothing? This allowed the marketing team to choose the right channels to most effectively and efficiently reach different groups of prospects and customers, and second, it provided the information required to personalize by sending the right content and message to the right segments at a very granular level.
Preventing hospital readmissions: Hospitals are turning to predictive analytics as they began to feel the financial pinch of high 30-day readmission rates. Real-time EHR data analytics helps hospitals cut readmissions by five to seven percent. This demonstrates how predictive analytics in real-time can analyze EMRs data to automatically identify and target patients at the highest risk of readmission early in their initial hospitalization when there is a lot that can be done to improve and coordinate their care, so they will do well when they leave the hospital. Notably, Kaiser Permanente has been working to refine its readmissions algorithms in order to better understand which returns to the hospital are preventable and which are not, a crucial distinction for value-based reimbursements.
Lifetime value analysis of a subscribers of communication service providers: CSPs are lately realizing that not all customers are the same. It is important for CSPs to assign a quantifiable dollar value to each customer, in order to prioritize various sets of customers. The Lifetime Value of a subscriber provides the predicted yield from each customer over the customer life. This helps CSP in offering high priority customers loyalty bonuses, preferential treatment through personalized service, better credit norms etc.
We are living in a world of data overloading. Predictive analytics can be a true human partner from elections to sporting events to the stock market on what the future will bring. Predictive analytics elevate human kind from an educated guess to data backed decision.
Related Article: Unleashing the Potential of Consumer IoT and Industrial IoT (IIoT) with Insights & Analytics
Recommended Reading
Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die
Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you’re going to click, buy, lie, or die.
Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections.
How? Prediction is powered by the world’s most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn.
Predictive analytics(aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate.
In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction:
- What type of mortgage risk Chase Bank predicted before the recession.
- Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves.
- Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights.
- Five reasons why organizations predict death — including one health insurance company.
- How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual.
- Why the NSA wants all your data: machine learning supercomputers to fight terrorism.
- How IBM’s Watson computer used predictive modeling to answer questions and beat the human champs on TV’s Jeopardy!
- How companies ascertain untold, private truths — how Target figures out you’re pregnant and Hewlett-Packard deduces you’re about to quit your job.
- How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison.
- 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more.
How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more.
A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.